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Ranking players or teams is always an interesting topic in sports. For instance, the ATP (As-

sociation of Tennis Professionals) tour has more than one thousand active professional players

participating in sponsored tournaments around the world. In one season, each player can play

against at most dozens of other players, only a small subset of the whole cohort, thus creating

a super-sparse ranking network system. It is crucial to extract the intertwined relationships

and rank all players based on the limited information available.
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Figure 1: Game record (a) and

the corresponding adjacency matrix

(b). The widths of the edges are

proportional to the weights.

Suppose that there are n players or teams who com-

pete in multi-player games or sports. The number of games

played between player i and player j is nij ≥ 0. Out of

these nij games, player i wins aij times and player j wins

aji = nij−aij times. The win-loss record can be represented

by a directed weighted network G whose adjacency matrix

A = {aij}. In general A is asymmetric with zeroes on the

diagonal. Figure 1 shows an example of G and A for a small

data set with n = 5. The direction of the arrows runs from

the winner to the loser with a weight being the frequency

of wins. For example, player A defeats player B four times

and loses three times.

For an undirected unweighted network, the eigenvector

centrality of a given node is proportional to the sum of the

centralities of its neighbors such that xi = λ
∑n

j=1Cijxj

where Cij = 1 if nodes i and j are connected, and zero other-

wise [Bonacich, 1987]. The solution is a list of the centrality

measures which can be used to describe the significance of

the nodes in the network.

For the directed weighted network in the current situa-

tion, a generalization of the eigenvector centrality is defined
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as

xi = λ
∑

j∈Ne(i)

aij
aij + aji

xj, (1)

where xi is the score of player i and Ne(i) is the set of its neighbors. The basic idea in (1) is score

swapping. Two players i and j will exchange some of their scores based on their win-loss record.

Player i gains a proportion
aij

aij+aji
of player j’s score, and meanwhile transfers (1 − aij

aij+aji
) of

its own score in return. The factor
aij

aij+aji
is the estimated probability that player i is preferred

to player j in a single game [Bradley and Terry, 1952]. Note that the swapped scores are not

symmetric. The score increase of a stronger player (with larger xi) by defeating an underdog is

less than its loss if it loses the game. Similarly, a player acquires more by defeating a stronger

opponent than a weaker one.

There is a drawback of the definition in (1). Let us consider two players k and l. Player k

loses all games it has played. In other words, akj = 0 for all j = 1, . . . , n and the kth row in the

adjacency matrix A contains only zeroes. It is easy to see that its score xk must be zero since

all coefficients
akj

akj+ajk
are zero. On the other hand, player l wins all games against player k but

loses all other games. Still, player l should have a zero score because either alj = 0 for j ̸= k or

xk = 0 and thus xl = 0 by (1). This does not make much sense in practice [Newman, 2018]. In

fact, being able to compete against other players is an affirmation for its skill and capability.

Not many players have the chance of playing against top players in sports. If they do, it is very

likely that they are participating in some top-notch tournaments which implies that their skills

must be at a relatively high level. Moreover, every player should get some credit for being able

to compete against other players. One should gain something even though a game is lost. As

a remedy, we propose to generalize (1) as

xi = λ
∑

j∈Ne(i)

aij + α

aij + aji + 2α
xj + β. (2)

The newly added term β is the constant extra amount that every player receive, similar to

the counterpart in the Katz centrality [Katz, 1953]. This term ensures that all players have

a positive score, even though they lose all games they have played, and thus pass it along to

others in the network. The new term α in the coefficient represents the gain from playing

against other players.

Equation (2) can be written in the matrix form x = λÃx+ β1 where Ã is an n× n matrix

with elements Ãij =
aij+α

aij+aji+2α
=

aij+α

nij+2α
if nij > 0, and zero otherwise; and 1 = (1, 1, . . . , 1)

is an n-vector of ones. The solution is x = β(I − λÃ)−11 conditioned on the fact the inverse

exists. The overall coefficient β is not important since we typically only care about the relative

magnitude (rank) of scores and a multiplication of an overall constant will not change the ranks.

We can use β = 1 for simplicity. Additionally, in order for the inverse to exist, λ must be less

than the reciprocal of the largest (most positive) eigenvalue of Ã [Newman, 2018].

Some generalizations can be accommodated for more realistic situations. First of all, if a

tie/draw is allowed as in chess and soccer games, a traditional way is to assign a half win to

both players. If a weaker player draws a game against a stronger player, it is considered a

“victory” for the underdog who then gains more from the score swapping than its opponent

does. Additionally, different games may have distinct importance. For instance, winning a

2



Grand Slam final should bring more glory and honor than winning a qualifying match. aij
needs to be replaced by wij, the total weight of winning games of player i against player j.

Equation (2) becomes

xi = λ
∑

j∈Ne(i)

wij + bij/2 + α

wij + aji + bij + 2α
xj + β.

where bij is the number of ties between player i and player j.
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Figure 2: A heat map summary of 200

simulation repetitions. The horizontal

axis is the true ranking of the players.

The vertical axis is the estimated rank-

ing.

In the simulation study, we assume that there are 50

players in a multi-player game network. Their skill lev-

els ui (i = 1, . . . , 50) are equally spaced on the interval

of [1, 5]. Higher values of skill level indicate stronger

players. The strongest player is player 1 with u1 = 5

and the weakest player is player 50 with u50 = 1. The

number of games nij completed between a pair of play-

ers i and j follows a Poisson distribution with mean

8. The probability that player i wins any game against

player j is pij = ui/(ui + uj), and the results of all

games are independent. The simulation is carried out

200 times. In each repetition, all players are ranked and

we tabulate all 200 ranked lists and summarize using

the heat map in Figure 2. The darkness of the grid rep-

resents the frequency of the pairs of true and estimated

ranks.

A real data analysis is also performed on the records

of ATP Tour in 2019 [Sackmann, 2022]. The results are

compared to the merit-based method used by ATP. Other applications include the identification

of disease-associated top (hub) genes in RNA sequencing-derived gene-gene interaction data

(e.g., correlation or weights).
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